If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-20=16
We move all terms to the left:
25x^2-20-(16)=0
We add all the numbers together, and all the variables
25x^2-36=0
a = 25; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·25·(-36)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*25}=\frac{-60}{50} =-1+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*25}=\frac{60}{50} =1+1/5 $
| 2y+29=16y-1/2 | | 13d-2-3d=46 | | -1-0g=-2 | | 6d-3-36d=8 | | 3f+12=3(f-6) | | -1-0g=2 | | 8a-(5-a)=5a-17 | | 4(2x+3)=5x-(-4x-3) | | 9y-(2y-5)=26 | | H(t)=-16t²+76t+23 | | 5t-9-t=2+4t | | (x-4)^2=-45 | | 7x+2=5x-4=4x+11 | | 6z=2z-12 | | -5x+2+-x-2=Y | | 6z=4(2z-7) | | 7+-2(-3+-1)=-3(1-3t) | | 6z=2z-7 | | x^2+18=-19 | | y=8/6(3y-8)+32/3 | | 6z=4(1/2z-6) | | 3/x=4/3x–10/3 | | y/4=36 | | 3(3+1)=4x+13 | | 5.5k+2-4.5k=4 | | x(x+20)=2x-20 | | 4y =36 | | 10x+7=-13 | | 40=(2w+2)w | | 1.4x+2.5(2)=26 | | (12x-9)-(5x-1)=(7x-5)-(4x-9) | | w(2w+1)=120 |